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Abstract 

JPEG is the most often used image compression standard that is used since 1992. It is a lossy 

compression method, and is widely used in digital cameras and mobile phones. Depending on the 

parameters and user needs, it can achieve a compression ratio between 10 and 50. Memory for digital 

image storage is saved on the expense of decompressed image quality. The method is based on the 

Discrete Cosine Transform (DCT) that separates the image into different frequency components. This 

paper shows how different parameters of the algorithm influence the performance of the compression. 

In the end, ideas are given how to either increase the compression ratio keeping the same 

decompressed image quality, or to improve the quality without decreasing the compression ratio. The 

quality between the original and the decompressed images is measured using two objective criteria: 

the Peak Signal-to-Noise Ratio (PSNR) and the structural similarity index (SSIM). Different types of 

8x8 image blocks (flat, impulse, ramp, ...) and their DCT transforms are analysed so the reader can 

anticipate the frequency content of the blocks. Understanding of the frequency content helps in 

creating customized algorithms for improving the basic JPEG. 

Keywords: digital image compression, JPEG, quantization 

 Introduction 1.

Digital image compression is an important operation to save memory space when storing 

digital images or videos. Compression algorithms take advantage of the presence of redundant 

data in digital images and reduce them. The point of the compression is to eliminate the 

redundancy without losing information from the image. Compression methods can be divided 

into two main categories: 1/ lossless, where the original image can be restored without any 

loss, and 2/ lossy, where the reconstructed image is only the approximation of the original. 

Current standards allow compression ratios around 1:3 for the lossless case and between 1:10 

and 1:50 for the lossy case. 

The importance of digital image compression can be shown with the following example. For a 

512x512 pixel 8-bit single colour digital image, the memory needed to store the image is 
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768kB. One minute of full HD 1080x1920 pixel resolution video with 30 frames per second 

would need around 12GB of storage space, so the importance of compression is obvious. 

This paper focuses on the most widely used digital image compression standard - the JPEG 

algorithm, which is based on the discrete cosine transform. Since this transform is well 

documented and used since 1974 (Pennebakker, Mitchell, 1992; JPEG group, 1992; Ahmed, 

Natarajan, Rao, 1974), it will not be explained in detail. A typical 256x256 pixel digital image 

that without compression occupies 64kB of memory space is shown in Fig. 1(a). Figures 1(b), 

1(c) and 1(d) show the same image with different levels of compression. Image sizes are 

listed below. As it can be observed, compression ratio of 10 can be easily achieved without 

noticeable loss in quality. For higher compression ratios (lower bitrate) the degradation in 

decompressed image becomes visible. The intensity of the degradation can be controlled with 

quantization that will be explained in the next section. 

     

 (a) (b) (c) (d) 

Fig. 1. Test image Lena with different compression ratios. (a) Original Lena image, Size: 

64kB, bitrate: 8bpp, (b) Lena test image compressed with compression ratio 11, Size: 5.8kB, 

bitrate: 0.73bpp, (c) Lena test image compressed with compression ratio 30, Size: 2.1kB, 

bitrate: 0.27bpp, (d) test image Lena compressed with compression ratio 46. Size: 1.4kB, 

bitrate: 0.17bpp. 

 The JPEG process 2.

The JPEG algorithm starts by dividing the digital image into blocks of size NxN. The size of 

the block can be different, where N usually equals 8. Other block sizes are possible, but rarely 

used. The same sequence of steps is then performed on each block. First, the original image 

range is shifted from [0, 255] to [-128, 127] by subtracting 128 from each entry of the 8x8 

block. This step is followed by the discrete cosine transform (DCT) of the block and this is 

the core of the JPEG compression algorithm. The DCT compacts the energy of the block into 

only few coefficients(Wallace, 1992). So, the block of 8x8 pixels is transformed into a block 

of 8x8 coefficients that represent the frequency components of the block. The upper left value 

is the DC component, and it represents the average value of the block, the remaining 63 
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values in the transformed block are the AC components and they represent the frequencies 

from low to high. The basic idea behind compression is to preserve the DC and the low 

frequency coefficients, and to ignore the high frequency coefficients, since the human eye will 

not be capable to recognize the degradation. The operation that will zero out the high 

frequency components is quantization. The trick is to find the optimal measure of degradation 

that will not be visible for the human eye, since JPEG is optimized for humans. 

2.1. Discrete Cosine Transform (DCT) 

The Discrete Cosine Transform converts the NxN matrix into another NxN matrix. In the case 

of digital image processing, these matrices represent digital images. The formulas for the 

forward and inverse transformations are given in Eq. (1). 
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As it can be seen, the core of the transform is the cosine function. The original matrix is 

decomposed into its frequency components using the cosine function. The transformation is 

real, there is no imaginary part as in the Fourier transform. The 2-D DCT is also separable, so 

it can be obtained by two subsequent 1-D DCTs. The 2x2 basis functions for the 2-D DCT 

along with their numeric values are shown in Fig. 2. For example, a 2D-DCT transform of the 

2x2 matrix 






 


68

73
M  is a 2x2 matrix 












49

65
MDCT . It means that matrix M can be 

obtained from the four basis function using Eq. (2). 4x4 and 8x8 blocks are decomposed in 

similar way using 16 and 64 basis functions, respectively. 
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(a)         (b) 

Fig 2. (a) 2x2 basis functions, (b) Numeric values of the transform matrices 

2.2 Quantization 

Quantization is the operation that degrades the digital image in a controlled way. Quantization 

is done by dividing each transform coefficient by an appropriate value. Quantization can be 

uniform when all quantization matrix entries have the same value, and non-uniform when 

each component is quantized differently. Since the human eye has different sensitivity to 

different frequency components, usually the non-uniform type of quantization is preferred 

(Thai, Cogranne, Retraint, 2017). The standard Q50 quantization matrix that is used in many 

applications is shown in Fig. 3. Quantization with this matrix can achieve very high 

compression ratio, with excellent decompressed image quality. This quantization matrix was 

discovered experimentally by image processing experts who made subjective tests over many 

different digital images (Wang, Lee, Chang, 2001). Other quantization matrices can be 

derived from the Q50. If the user needs higher quality, the Q50 should be multiplied by (100-

quality level)/50. Higher quality also means more bits for representation and lower 

compression ratio. On the other hand, if the user wants to save extra bits and to sacrifice 

quality, the Q50 should be multiplied by 50/quality level. The higher the index of matrix Q, the 

higher the quality, but the compression ratio also drops.  

Two typical quantization matrices are shown in Fig. 3: the Q10 and the Q90. By using the Q10 

most of the coefficients will be zeroed out, and only few coefficients will remain. On the 

other hand, by using the Q90 whose entries are quite small, most of the frequency components 

will survive the quantization (Tan, Gan, 2015). Typical block of DCT coefficients quantized 

with different quantization matrices is shown in Fig. 4. 
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Fig. 3. Quantization matrices Q10, Q50 and Q90 

 

 (a) (b) 

 

 (c) (d) 

Fig. 4. (a) Original 8x8 block of DCT coefficients, (b) Quantized and dequantized block using 

quantization matrix Q10 – 7 coefficients remained, (c) Quantized and dequantized block using 

quantization matrix Q50 – 20 coefficients remained, (d) Quantized and dequantized block 

using quantization matrix Q90 – 25 coefficients remained 

2.3. Block transforms 

To get better insight what happens during the transformation of the 8x8image block, typical 

blocks along with their transform are presented. The simplest block is a flat block where no 

variation in intensity is present inside the block, Fig. 5. The DCT of this block contains only 
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the DC component that represents the average value of the block, Fig. 5(b) and (d). The DC 

component of the darker block is smaller because the average intensity of the block is smaller. 

                      

(a) (b) (c) (d) 

Fig.5. (a) Flat block, intensity 50, (b) DCT2 (a), (c) Flat block, intensity 200, (d) DCT2 of (c) 

Fig. 6 shows a block that contains only one pixel impulse in the middle of the block. 

Transform of the block shows that horizontal, vertical and diagonal frequency components 

will appear. The intensity of these components depends on the contrast of the block to be 

transformed. Higher contrast will result in appearance of greater intensities of high frequency 

components. Fig. 6(a) shows a block with contrast 200 (intensity of the flat area is 25, and 

intensity of the impulse is 225). Fig. 6(c) also shows an impulse, but with a much lower 

contrast of 50 (intensity of the flat area is 25, and the intensity of the impulse is 75 as in the 

previous case). The difference in the frequency content is obvious. While both DC 

components are almost equal (225 and 206 respectively, the difference is caused by the 

different impulse intensity), AC components of the high contrast block are higher. The low 

contrast block more remind to the flat block, and this observation also holds for the frequency 

content. 

                      

(a) (b) (c) (d) 

Fig. 6. (a) Impulse image block, contrast=200, (b) DCT2 of (a), (c) Impulse image block, 

contrast=50, (d) DCT2 of (c) 

The next block analysed was a random texture block, Fig. 7. The block contains 64 random 

values between 0 and 255. The randomness of the block implies random frequency content 

for all spatial frequencies. The DC component that represents the average of the block will 

remain dominant in comparison with the other frequency components for both different 

random texture blocks. 
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(a) (b) (c) (d) 

Fig. 7. (a) Random texture block 1, (b) DCT2 of (a), (c) random texture block 2, (d) DCT2 of (c) 

The block that contains a horizontal line is shown in Fig. 8. Changes in intensity occur only in 

the vertical direction of the block, and that is the reason why only vertical frequency 

components are contained in the transformed image. The intensity of the transform 

coefficients also depends on the contrast between the line and the flat area. Higher contrast in 

the original block will result in higher intensities of the frequency components. 

                      

(a) (b) (c) (d) 

Fig. 8. (a) High contrast horizontal line, (b) DCT2 of (a), (c) Low contrast horizontal line (d) 

DCT2 of (c) 

                      

(a) (b) (c) (d) 

Fig. 9. (a) High contrast diagonal line image block, (b) DCT2 of (a), (c) Low contrast 

diagonal line image block, (d) DCT2 of (c) 

Next, the low contrast and high contrast diagonal line is analysed, Fig 9. After the 

transformation of both blocks, only the diagonal frequency components remained. This is 

because of the same change in both horizontal and vertical directions. Again, the intensity of 

the frequency components depends on the contrast between the line and the flat area of the 

block. 
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Fig. 10 shows the transformation of the low contrast and high contrast vertical edges. Both 

frequency plots show similar shape, dominant DC component and minor AC components. 

The DC component of the high contrast block is much bigger because the average value of the 

high contrast block is higher than the average value of the low contrast block. 

                     

(a) (b) (c) (d) 

Fig. 10. (a) High contrast image block, (b) DCT2 of (a), (c) Low contrast image block, (d) 

DCT2 of (c) 

Finally, Fig. 11 shows a diagonal edge and slope blocks before and after their corresponding 

DCT representations. Similarly as in the case of a diagonal line, the spectra of the diagonal 

edge contains only diagonal components. For the slope block where the intensity change 

occurs only in horizontal direction, the spectral components also appear in one direction (only 

the first row has entries different from zero). 

                     

(a) (b) (c) (d) 

Fig. 11. (a) Diagonal edge image block, (b) DCT2 of (a), (c) Slope image block, (d) DCT2 of (c) 

The above examples provide better insight into the nature of the transform. The important 

thing to remember is that the DC component represents the average of the block, and contains 

the highest portion of block energy. By moving further away from the DC component, 

frequency rises, and the energy of the components drops (Thyagarajan, 2011). 

 Experimental results 3.

Thumbnails of standard test images where our tests were performed on are shown in Fig. 12. 

Two objective measures were used to evaluate the quality of the compression process: peak 

signal-to-noise ratio (PSNR) and the structural similarity index (SSIM). Values obtained 
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express the PSNR and SSIM between the original image and the image after the compression 

and decompression processes. While the PSNR measures the difference between images on a 

pixel base, the SSIM measures the difference in image structure. The PSNR ranges between 0 

and high values (in dB), and the SSIM ranges between 0 and 1. Higher values of both 

measures mean better quality. Table I shows the results for all test images compressed and 

decompressed using quantization matrix Q50. 

 

                          

                     

Fig.12. Test images used in the research: Baboon, Barbara, Boat, Cameraman, Clock, F16 

(top row), Lake, Lena, Moon, Peppers and Pirate (bottom row) 

 

Table 1. Compression parameters for 11 test images, CR is the Compression Ratio, PSNR is 

expressed in decibels (dB), and SSIM is the Structural Similarity Index 

 Bitrate (bpp) CR PSNR SSIM 

Baboon 0.84 9.49 29.63 0.66 

Barbara 0.89 8.99 33.52 0.86 

Boat 0.94 8.49 31.96 0.81 

Cameraman 0.77 10.36 31.57 0.59 

Clock 0.58 13.91 34.95 0.56 

F16 0.83 9.66 32.71 0.74 

Lake 1.05 7.60 31.14 0.80 

Lena 0.72 11.10 33.79 0.79 

Moon 0.72 11.07 32.19 0.64 

Peppers 0.77 10.33 34.29 0.82 

Pirate 0.96 8.30 31.70 0.82 
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 Discussion 4.

This paper analysed the DCT of different types of 8x8 pixel image blocks. Depending on the 

block type, the frequency content in the transformed domain is also changing. By analysing 

the transformed blocks the reader can get a good estimate what to except after transforming 

real image blocks. This is important because the transformation is followed by quantization 

which is the irreversible step of the process. The decision which quantization matrix to use 

can be reached if the user knows what to expect after the transformation. Many improved 

JPEG algorithms exploit this property, and adapt the quantization step to the block content. 

 Conclusion 5.

In this paper we have analysed the JPEG process, explained how the discrete cosine transform 

works, and how quantization degrades the image quality. We also showed how the 

compression process saves memory space for storing digital images. By doing the 

experiments with test images we showed what are the typical values for the quality measures. 

In the future, it is planned to find a connection between image content and compressed digital 

image quality to get higher compression ratio with no change in decompressed image quality. 
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